FERRXANTHONE, A 1,3,5,6-TETRAOXYGENATED XANTHONE FROM MESUA FERREA

SURESH WALIA and S. K. MUKERJEE

Division of Agricultural Chemicals*, Indian Agricultural Research Institute, New Delhi-110012, India

(Revised received 2 February 1984)

Key Word Index—Mesua ferrea; Guttiferae; heartwood; 1,3-dimethoxy-5,6-dihydroxyxanthone; ferrxanthone.

Abstract—A new xanthone was isolated from the heartwood of *Mesua ferrea* and its structure determined by UV, IR, NMR and mass spectrometry as 1,3-dimethoxy-5,6-dihydroxyxanthone.

INTRODUCTION

Mesua ferrea, a plant containing a variety of medicinal and biocidal compounds, has been subjected to intensive chemical investigations [1-5]. In the course of our search for new biocidal compounds, a reinvestigation of the heartwood of M. ferrea has now yielded besides the known compounds a new 1,3,5,6-tetraoxygenated xanthone, for which we give the trivial name 'ferrxanthone', from the more polar fractions. It also occurs in the bark. In this communication, we report its structure as 1 which to our knowledge is the first report of the occurrence of a tetraoxygenated xanthone from this source.

RESULTS AND DISCUSSION

Ferrxanthone (1), obtained from the polar fractions by n-butanol extractions and chromatography was crystallized from pyridine-methanol mp 294-295°. On the basis of elementary analysis and mass spectrometry, the molecular formula was assigned as $C_{15}H_{12}O_6$.

The xanthone (1) gave a blue colour with alcoholic ferric chloride. It formed a diacetate (4) with acetic anhydride-pyridine, a dimethyl ether (2) with dimethyl sulphate-potassium carbonate and a monomethyl ether (3) with methyl iodide-potassium carbonate. Hence the compound was a dihydroxydimethoxy xanthone in which the two hydroxyl groups were not chelated (¹H NMR spectrum). Since its monomethyl ether (3) also did not give any colour with alcoholic ferric chloride, the possibility of the presence of a chelated-hydroxyl group was further ruled out.

The UV spectrum of 1 showing λ_{max} at 244, 282, 312 nm is characteristic of a 1,3,5,6-tetraoxygenated xanthone [6]. The xanthone was soluble in dilute sodium carbonate solution and showed a strong bathochromic shift of the K band on addition of sodium acetate typical of 3-hydroxy-xanthones [7]. The presence of an *ortho* dihydroxy group in the molecule is indicated by a positive Tollen's test and by a bathochromic shift of 12 and 48 nm induced by sodium acetate-boric acid and aluminium chloride, respectively. Regeneration of the ethanol spectrum on the

addition of hydrochloric acid further confirmed the presence of two hydroxyl groups *ortho* to each other at the C-5 and C-6 positions.

The presence of one pair each of ortho-coupled and meta-coupled protons in two different aromatic rings is evident from the ¹HNMR of 1 which showed four aromatic protons exhibiting meta and ortho split doublets at 6.53, 6.72 (J = 2.5 Hz) and 6.90, 7.50 (J = 8.5 Hz). Since the ¹H NMR signal of H-2 always appears at somewhat higher field than that of H-4 for a given set of hydroxyl or methoxyl substituents [8], the singlets at 6.53 and 6.72 were assigned to H-2 and H-4, respectively. Similarly of the two ortho coupled protons, a low field doublet was assigned to the C-8 hydrogen because such protons resonate at lower field due to an anisotropic effect of the carbonyl group. Acetylation of 1 caused a 0.16 ppm downfield shift [9, 10] of the H-7 and H-8 signals in the ¹HNMR spectrum (related to its position in the permethyl ether). However, meta coupled protons remain unaffected. Thus the two hydroxyl groups must be situated at the C-5 and C-6 positions.

In the mass spectrum of \hat{I} , apart from the dominant $[M]^+$ peak at m/z 288 significant fragment ion peaks appeared from the loss of H, OH and H_2O ions which is due to the operation of an *ortho*-effect caused by the OMe substituent at C-1. The most intense peak was observed when CHO was lost from the $[M]^+$. The appearance of a characteristic doubly charged ion peak corresponding to $[M-CO]^{2+}$ at m/z 130 along with $[M-CO]^{+}$ and $[M-C_2H_3O]^{+}$ confirm the existence of a second methoxyl

$$R^2O$$
 OR^3
 OR^4
 OR^1
 OR^4

- $R^1 = R^2 = Me \cdot R^3 = R^4 = H$
- 2 $R^1 = R^2 = R^3 = R^4 = Me$
- 3 $R^1 = R^2 = R^4 = Me$, $R^3 = H$
- 4 $R^1 = R^2 = Me$, $R^3 = R^4 = Ac$

^{*}Contribution No. 234.

1817

group at C-3. These findings are in accordance with similar observations made for xanthones having methoxyl substituents at C-1 and C-3 [11]. On the basis of these studies, ferrxanthone was assigned the structure 1,3-dimethoxy-5,6-dihydroxyxanthone (1) which is also supported by biogenetic considerations [12].

EXPERIMENTAL

Mps are uncorr. UV spectra were recorded in EtOH soln. IR spectra were determined in KBr or Nujol. MS were recorded at 70 eV. 1 H NMR were measured at 90 MHz in CDCl₃-DMSO- d_6 and chemical shifts are given in δ (ppm) scale relative to TMS. Silica gel was used for TLC and spots were visualised with l_2 vapours and UV fluorescence.

Isolation and purification. Finely chipped heartwood of M. ferrea L. procured from Kerala (South India) was extracted successively with n-hexane, CHCl₃ and EtOH. The CHCl₃ extract after silica gel chromatography (petrol-CHCl₃) yielded besides β -sitosterol and stigmasterol, six known xanthones which were identified as 2-methoxyxanthone, 1,7-dihydroxyxanthone, 1,5-dihydroxyxanthone, 1,5-dihydroxyxanthone, 1,5-dihydroxyxanthone and 1,5-dihydroxy-3-methoxyxanthone (mp, TLC and MS). The EtOH extract was concd under red. pres. to give a residue which was partitioned between n-BuOH and H_2O . The organic layer was evapd in vacuo and the residue was repeatedly chromatographed by silica gel CC using CHCl₃-MeOH (2:1) as eluent to give xanthone (1).

1,3-Dimethoxy-5,6-dihydroxyxanthone (1). Crystallised from pyridine-MeOH as colourless fine needles, mp 294-295°. UV λ_{max}^{EtOH} nm (log ϵ): 244 (4.71), 282 (4.41), 312 (4.50); $\lambda_{\text{max}}^{\text{BiOH-NaOAc}}$ nm (log ϵ): 244 (4.71), 284 (4.42), 337 (4.60); $\lambda_{\max}^{AlCl_3}$ nm (log ϵ): 244 (4.75), 315 (4.20), 3.60 (3.66); $\lambda_{\max}^{AlCl_3-HCl}$ nm (log ε): 244 (4.83), 282 (4.40); 312 (4.49); $\lambda_{\text{max}}^{\text{NaOAc-H}_3\text{BO}_3}$ nm (log ε): 254 (4.75), 282 (4.55), 324 (4.57). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3250-3450 (OH), 1750, 1600 (>C=0). ¹H NMR (DMSO- d_6): δ 3.92 (3H, s, OMe), 3.98 (3H, s, OMe), 6.53 (1H, d, J = 2.5 Hz, C-2), 6.72 (1H, d, J= 2.5 Hz, C-4), 6.9 (1H, d, J = 8.5 Hz, C-7), 7.50 (1H, d, J= 8.5 Hz, C-8). MS m/z (rel. int.): 288 ([M]⁺, 100), 287 ([M $-H]^+$, 55), 271 ([M-OH]⁺, 19), 270 ([M-H₂O]⁺, 7), 260 $([M-CO]^+, 13), 259 ([M-CHO]^+, 90), 258 ([M-CH₂O]^+,$ 47), 257 ([M - OMe]⁺, 32), 245 ([M - CO - Me]⁺, 14), 243 ([M -CO - OH]⁺, 15), 242 ([M - H₂O - CO]⁺, 54) and 130 ([M $-CO]^{2+}$, 15.8). (Found: C, 62.0; H, 4.2, $C_{15}H_{12}O_6$ requires C, 62.3; H, 4.2 %.)

1,3,5,6-Tetramethoxyxanthone (2). A soln of 1 (50 mg) in dry Mc₂CO was refluxed for 48 hr with Mc₂SO₄-K₂CO₃ to yield a product which crystallized from CHCl₃-hexane as colourless fine needles, mp 142-144° (lit. [13] mp 146-147°). ¹H NMR (CDCl₃): δ 3,98, 4.05, 4.09 (All s, 12H, 4 × OMe), 6.41 (1H, d, J = 2.5 Hz, C-2), 6.67 (1H, d, J = 2.5 Hz, C-4), 7.05 (1H, d, J = 8.5 Hz, C-7), 8.10 (1H, d, J = 8.5 Hz, C-8). (Found: C, 64.1; H, 4.9, C₁₇H₁₆O₆ requires C, 64.5; H, 5.1%)

1,3,6-Trimethoxy-5-hydroxyxanthone (3). Compound 1 (50 mg) on methylation with K_2CO_3 -MeI in dry Me₂CO at room temp. afforded 3 as white fine needles from MeOH, mp 251–252° (lit. [14], mp 254–255°. ¹H NMR (CDCl₃): δ 3.90, 3.95, 4.0 (all s, 9H, 3 × OMe), 6.25 (1H, d, J=2.5 Hz, C-2), 6.50 (1H, d, J=2.5 Hz, C-4), 6.85 (1H, d, J=8.5 Hz, C-7), 7.92 (1H, d, J=8.5 Hz, C-8). (Found: C, 63.4; H, 4.2. $C_{16}H_{14}O_6$ requires C, 63.6; H, 4.6%)

1,3-Dimethoxy-5,6-diacetoxyxanthone (4). Treatment of 1 (50 mg) with Ac₂O-pyridine at room temp. for 24 hr yielded the diacetate (4) (40 mg) which was crystallized from MeOH as fine needles, mp 214–215°. ¹H NMR (CDCl₃): δ 2.4 (3H, s, OAc), 2.5 (3H, s, OAc), 3.95 (3H, s, OMe), 4.20 (3H, s, OMe), 6.44 (1H, d, J = 2.5 Hz, C-2), 6.51 (1H, d, J = 2.5 Hz, C-4), 7.20 (1H, d, J = 8.5 Hz, C-7), 8.26 (1H, d, J = 8.5 Hz, C-8). MS m/z (rel. int. %): 372 ([M]⁺, 85). (Found: C, 61.6; H, 4.5. C₁₉H₁₆O₈ requires C, 61.3; H, 4.3%).

Acknowledgements—We wish to thank the Director, Kerala Forest Research Institute, Kerala (India) for identifying and providing the plant material and Mr. R. S. Tanwar for technical assistance.

REFERENCES

- Govindachari, T. R., Pai, B. R., Subramanian, P. S., Rao, U. R. and Muthukumaraswamy, N. (1967) Tetrahedron 23, 243.
- 2. Roberts, J. C. (1961) Chem. Rev. 591.
- Finnegan, R. A. and Bachman, P. L. (1965) J. Pharm. Sci. 54, 633.
- 4. Chow, Y. L. and Quon, H. H. (1968) Phytochemistry 7, 1871.
- Gunasekara, S. P., Ramachandran, S., Sellial, S. and Sultanbawa, M. U. S. (1975) J. Chem. Soc. Perkin Trans 1, 2447.
- Ghosal, S., Chaudhuri, R. K. and Nath, A. (1973) J. Pharm. Sci. 62, 137.
- Barros Correa, D., De Fonseca, L. G., Siliva, E., Gottlieb, O. R. and Conclaves, S. J. (1970) Phytochemistry 9, 447.
- Stout, G. H., Christensen, E. N., Balkenhol, W. J. and Stevens, K. L. (1969) Tetrahedron 25, 1961.
- Ghosal, S. and Chaudhury, R. K. (1974) J. Chem. Soc. Perkin. Trans. 1, 2538.
- Bandaranayake, W. M., Crombie, L. and Whiting, D. A. (1971) J. Chem. Soc. (C) 804.
- 11. Arends, P. and Helboe, P. (1973). Org. Mass. Spectrom. 7, 667.
- Carpenter, I., Locksley, H. D. and Scheinmann, F. (1969) Phytochemistry 8, 2013.
- Wolfrom M. L., Komitsky, F., Fraenkel, G., Loocker, J. H., Dickey, E. E., McWain, P., Thompson, A., Mundell, P. M. and Windrath, O. M. (1964) J. Org. Chem. 29, 692.
- Burling, E. D., Jefferson, A., Scheinmann, F. (1965) Tetrahedron 21, 2653.